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Barcelona Supercomputing Center

The BSC-CNS objectives:
– R&D in Computer Sciences, Life Sciences

and Earth Sciences
– Supercomputing support to external

research

BSC-CNS is a consortium that includes :
– the Spanish Government        – 51%
– the Catalonian Government    – 37%
– the Technical University of Catalonia (UPC)  – 12%

+400 people



MareNostrum III overview
Deployed end on 2013 
36 x IBM iDataPlex Compute racks
– 84 x IBM dx360 M4 compute nodes

• 2x SandyBridge-EP E5-2670 2.6GHz/1600 20M 8-core 115W
• 8x 4G DDR3-1600 DIMMs (2GB/core)
• 500GB 7200 rpm SATA II local HDD

3028 compute nodes
– 48,448 Intel cores 

Memory 94.62 TB
– 32GB/node

Peak performance: 1.0 Pflop/s 
– Node performance: 332.8 Gflops
– Rack Performance: 27.95 Tflops
– Rack Consumption: 28.04 kW/rack (nominal under HPL)

Estimated power consumption: 1.08 MW 
Infiniband FDR10 non-blocking Fat Tree network topology
Position 41 of TOP500
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MareNostrum III

Maybe not the most powerful supercomputer…
but the more beautiful in the world



BSC-CNS: Computer Sciencies
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Outline

Programming challenges for the cloud and distributed 
computing in general 
StarSs programming model
Programming the cloud with COMPSs 
– Syntax + Python binding: PyCOMPSs + C
– COMPSs infrastructure and features
– Associated Tools: IDE, monitor, traces 

Integration of COMPSs with new storage strategies 
Other projects where COMPSs has been involved
Conclusions 
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Challenges: How to efficiently compute in the cloud with 
wireless sensor networks data?

On board processor

Wireless Sensor Network

Car-to-Car  / Car-to-Infrastructure

Reliable, secure, ubiquitous 
communication network

CAR STATE COMMUNICATION

Real-time control of single 
vehicles

ACTION on the ACTUATORS 
in cooperation with the on board 

processor

Cloud

Data Centers

Supercar

Active aerodynamics simulation
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Cloud programming challenge, or how to make it the 
programmers comfort zone

The Learning Zone model establishes a 
theory of how performance of a person can 
be enhanced and their skills optimized

– Comfort Zone: feel comfortable and do not have to 
take any risks

– Learning Zone: just outside of our secure 
environment, we grow and learn 

– Panic Zone: all our energy is used up for 
managing/controlling our anxiety and no energy 
can flow into learning.

Moving to the learning zone, enables to 
extend the comfort zone, moving towards the 
panic zone 
When following a personal dream or vision, 
individuals need to move to the learning zone 
and take controlled risks, in order to achieve 
the challenges of their panic zone

Social pedagogy

* The Learning Zone Model 
(Senninger, 2000)

Cloud poses different challenges to programmers
… away from the current comfort zone 
… maybe in the panic zone??? 



The programming comfort zone 

State of the art in programming  
– Sequential programming
– Data is always where you expect
– All decisions controlled by the 

programmer

Programming for the cloud 
– Parallel programming (~)
– Elasticity
– Distributed environment -> where is my 

data? 

Comfort zone

Panic? Zone



Sequential programming

Simple interface
Sequential program

Regular processors

Programming language

Programs 
“decoupled” 

from computing 
platform

Applications



Programming evolution for distributed programming

Distributed computing APIs make programming more 
complicated

Programming language + API

Applications

Program logic 
+

Middleware 
specificities



BSC vision 
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General purpose
Task based

Single address space

“Reuse”
architectural ideas 

under
new constraints

Program logic
independent of 

computing platformApplications

Power to the runtime

PM: High-level, clean, abstract interface

API



STARSs basic idea

Resource 1
...
for (i=0; i<N; i++){

T1 (data1, data2);
T2 (data4, data5);
T3 (data2, data5, data6);
T4 (data7, data8);
T5 (data6, data8, data9);

}
...

Sequential Code

T10 T20

T30
T40

T50
T11 T21

T31
T41

T51

T12

…

(c) Scheduling, 

data transfer,

task execution

(d) Task completion,

synchronization

Parallel Resources
(a) Task selection + 

parameters direction 

(input, output, inout) 

Resource 2

Resource N

. . . 

(b) Task graph creation 

based on data 

dependencies
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• StarSs
– Sequential general purpose 

programming language + annotations
– Task based
– Simple linear address space

– Support for SMP, GPUs, Cluster, Grids 
and Clouds

StarSsCellSs
SMPSs
GPUSs

GridSs

ClearSpeedSs

ClusterSs

OmpSs
ClusterSs

COMPSs
• Programmability/Portability

– “Same” source code runs on “any” platform
– Incremental parallelization/restructure
– Focus in the problem, not in the hardware 

platform

• Performance
– Intelligent Runtime

– Automatically extracts and exploits 
parallelism

– Locality awareness
– Matches computations to specific 

resources on each type of target 
platform

Open Source
http://compss.bsc.es

The StarSs programming model



The StarSs  “Granularities”

StarSs

OmpSs COMPSs

@ SMP @ GPU @ Cluster

Average task Granularity:

100 microseconds – 10 milliseconds                    1second  - 1 day

Language binding:

C, C++, FORTRAN                                               Java, Python, C/C++ 

Address space to compute dependences:

Memory                                                                Files, Objects (SCM)

Parallel     Ensemble, workflow



Advantages and drawbacks of COMPSs
✔ More flexible and with more expressivity

– The potential of the programming language
– Enables to express complex problems

✔ Data independent 
– Different data inputs may generate different task graphs

✔ Powerful runtime
– Platform unaware
– Exploits inherent parallelism 

✗ Less explicit than graphical workflows
– Although this can be partially compensated with the COMPSs monitor

✗ Large degree of flexibility may prevent some programmers to be 
efficient

– Schemas such as MapReduce are sometimes more appreciated by 
programmers

– Can be improved through training and support
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Programming objectives 

Reduce the development complexity of Grid/Cluster/Cloud 
applications to the minimum
– Writing an application for a computational distributed infrastructure may 

be as easy as writing a sequential application

Target applications: composed of tasks, called several times
– Granularity of the tasks or programs
– Data: files, objects, arrays and primitive types

Programming languages support
– Java (native)
– Python
– C/C++
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COMPSs syntax: Java

Main Program {

taskA(data1);

for (int i=0; i< N; i++)

taskB(data1, data2);

if (condition)

process(data2);

}

t
taskA

taskBtaskBtaskB

main thread

synch

Based on pure-Java fully-sequential programming
– No APIs, no threading, no messaging
– No parallel constructs, no pragmas
– Maintains sequential consistency



 public interface HMMPfamItf {
@Constraints(storageElemSize = 0.5f)
@Method(declaringClass = "hmmerws.HMMPfamImpl")
String hmmpfam(

@Parameter(type = Type.FILE, direction = Direction.IN) String seqFile,
@Parameter(type = Type.FILE, direction = Direction.IN) String dbFile );

@Service(namespace = "http://hmmerobj.worker", name = "HmmerObjects", port = 
"HmmerObjectsPort")

String scoreRating(
@Parameter(type = Type.OBJECT, direction = Direction.IN) String resultFile1, 
@Parameter(type = Type.OBJECT, direction = Direction.IN) String resultFile2 );

}

Annotated Interface

public static void main(String args[]) throws Exception {
split(fSeq, fDB, seqFrags, dbFrags); 
for (String dbFrag : dbFrags) 

for (String seqFrag : seqFrags) {
output = HMMPfamImpl.hmmpfam (seqFrag,  dbFrag);
finalOutput = scoreRating(output, finalOutput);

}
}

Java code

Task constraints

Parameter
metadata

COMPSs syntax: Java

Regular methods

Web services



Python (PyCOMPSs) syntax

Invoke tasks as Python
functions/methods

API for data synchronization
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class Foo(object):
@task()
def myMethod(self):

…

foo = Foo()

myFunction( foo )

foo.myMethod()

…

foo = compss_wait_on(foo)

foo.bar()

Main Program

Function definition

Task selection in function definition (decorators)

@task( par = INOUT )
def myFunction(par):
…

myF

myM

synch
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COMPSs syntax: C
compss_on();

A = Matrix::init(N,M,val);
B = Matrix::init(N,M,val)
C = Matrix::init(N,M,0.0)

C.multiply(A, B);
compss_off();

Main Program

interface Matmul
{
//C functions
void initMatrix(inout Matrix matrix, in int mSize, in int nSize, in 
double val);
void multiplyBlocks(inout Block block1, inout Block block2, inout
Block block3);
//C++ Methods
void Block::multiply(in Block block1, in Block block2);
static Matrix Matrix::init(in int mSize, in int bSize, in double
val);
};

Interface

IDL file used to identify tasks
and parameters

API for data synchronization



Service Composition

Orchestrating parallel services as sequential applications
– Rely on inner services (and methods)
– Can be published as a service as well
– Several orchestrations as a single service
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public class TravelService {

@Orchestration

public Booking bookTravel(…) {

Card c = checkCreditCard(…);

…

}

}

public interface TravelItf {

@Service(…)

Card checkCreditCard(…);

…

}



COMPSs Bindings integration
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Java
Runtime

C/C++
stubs

Python
binding

Java
App

C/C++
App

Python
App

JNIC/C++
library



Custom Loader

Javassist

initialize(f1);

for (int i = 0; i < 2; i++) {

genRandom(f2);

add(f1, f2);

}

print(f2);

Annotated 
interface

T1 T3

T2 T4
Grids 
Clusters
Clouds

Files

COMPSs Infrastructure

User code: Python, Java, C/C++



Runtime features

Supported Features:
– Unaware of underlying computing 

platform
– Interoperability with different 

clouds
– Data dependency analysis
– Data renaming
– Data transfer

In Progress:
– Checkpointing
– Task nesting
– Distributed Scheduling P2P
– Support for heterogeneous 

platforms

– Task scheduling
– Resource management
– Results collection
– Fault tolerance
– Shared disks management

– Deployment in mobile clouds 
– Task scheduling with multiple 

versions 
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OpenStack
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Runtime System: Interoperability

Platform unawareness
Support for different grid 
middlewares
Cloud interoperability:

– Public and private 
– Heterogeneous 

clouds
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Computing platform: in a Cluster (interactive)

Typical setup:
– Master node: main program (+ master runtime)
– Worker nodes: tasks (+ worker runtime)

Communication layer

SSH...

COMPSs Master RT

App main program

COMPSs Worker RT

Task code

Master

Workers

Described by XML files
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Computing platform: in a Cluster (queue system)

Execution divided in two phases
– Launch scripts queue a whole COMPSs app execution
– Actual execution starts when reservation is obtained

Queue System (LSF, PBS, ...)

Launch
scripts

Automatically
generate XML files

COMPSs RT

Application
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Computing platform: in a Grid

COMPSs Runtime
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Composite

Composite

Composite

Service Class COMPSs RT

S
er

vi
ce

In
te

rfa
ce

C
lie

nt

Service Container

... ...

Service

Method

Method

Runtime integrated in a platform with:
– Service orientation
– Virtualization

Computing platform: in the Cloud
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Deployment of COMPSs in EGI federated cloud
Single multi-job request

(workflow)
Multiple requests

ENM Service (OMWS2)Single request scenario: Issues a 
multi-job request (6 species and 2 
modelling algorithms) producing 
12 distribution models. It exploits 
different FedCloud templates.
Multiple requests scenario: tests 
the global service performance for 
a given workload pattern 
(Gaussian random) by issuing 
many requests with low 
complexity (3 tasks).
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Runtime behavior: scheduling and resource management
Task Scheduler
– Assigns tasks to VMs or physical resources
– Each VM or resource has its own task queue

Scheduling Optimizer
– Checks status of workers 
– Can decide 

• To perform load balancing 
• Create/destroy new VMs

Resource Manager: elasticity
– Manages all cloud middleware related features
– Holds information about all workers and about cloud providers 
– Scheduler Optimizer sends to the RM requirements about new VM characteristics 
– Resource Manager, evaluates the cloud providers alternatives and chooses the 

best option
• More economic
• The decision can be to open a new private or public VM

– For each Cloud provider, a data structure stores the different available instances 
(with its features) and the connector that should be used 



33

Interoperability to cloud middleware through connectors
The runtime communicates with the Cloud by means of Cloud 
connectors
The connectors implement the interaction of the runtime with a given 
Cloud provider
Connectors abstract the 
runtime from the particular API 
of each provider
This design facilitates the 
addition of new connectors for 
other providers.



Runtime behavior

Dependence detection
– In files 
– In objects
– In data from Web services 
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Elasticity in the Cloud

Sample hybrid setup for Cloud bursting
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Elasticity in the Cloud
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Dynamic creation / 
destruction of VMs

– Depending on task load

Bursting to meet peak 
demands

– Private Cloud (EMOTIVE)
– Public Cloud (Amazon)

Save VMs for later use
– Amazon: use the whole 

hour slot

Reuse of VMs
VM deadlines



Elasticity in the Cloud

Scalability
– Private Cloud: the entire 

workflow in a single 
provider

– Hybrid (Private + Public): 
tasks and data distributed 
over two distant providers
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COMPSs IDE

Graphical interface to help developers with COMPSs 
applications
– Annotation of main program and tasks
– Generation of project and resources files (xml)
– Deployment in the infrastructure

Developed as Eclipse plugin
– Available in the Eclipse marketplace  
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Runtime Monitoring

The runtime of COMPSs provides some information at execution 
time so the user can follow the progress of the application:
– Real-time monitoring information (http://localhost:8080/compss-

monitor/ )
• # tasks
• Resources usage information
• Execution time per task
• Real-time execution graph
• …



Runtime features: Tracing and performance analysis
Paraver is the BSC tool for trace visualization
– Trace events are encoding in Paraver (.prv) 

format by Extrae
– Paraver is a powerful tool for performance 

analysis
– Paraver enables different views of a trace
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Severo Ochoa project

The BSC-CNS has been accredited with the Severo Ochoa 
Center of Excellence, an award given by the Spanish Ministry 
as recognition of leading research centres in Spain that are 
internationally known organisations in their respective areas.
Involves all BSC R&D departments
Four subprojects:
– Hardware and software technologies, 

to facilitate the introduction of Exascale computing and managing large 
amounts of data, focusing on the improvement of energy efficiency

– Personalized medicine, to design drugs to fit the needs of each patient
– Heart simulation, to perform modelling and simulation with the primary 

objective to determine how the heart muscle works
– Air quality and climate models, specially in areas that affect health 

(Sahara dust concentration)



Severo Ochoa: Cloud and BigData

Intersection between Cloud Computing and large scale data 
analytics/management

Vertical approach integrating previous technologies
– Programming environments and runtime systems
– Resource management in heterogeneous systems and workloads
– Storage architecture and management

To be demonstrated with “in-house” scientific challenges



What is the HBP?Human Brain Project

A 10-year European initiative to 
understand the human brain, 
enabling advances in neuroscience, 
medicine and future computing

One of two FET Flagships

A consortium of 256 researchers 
from 146 institutions, in 24 
countries across Europe, in the US, 
Japan and Chin

BSC contributes with programming 
models and resource management
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Sample scenarios

Model = 
{neurons}

Simulation1

Simulation2

Potentials= 
{sequence 
for each 
neuron}

Implementation:
Persistent, Distributed, Resilient

API:
Shared  object space

management: create/delete
Access: get, put
Query, iterators

Concurrency
flow control  (seq/par)
synchronization

Consistency
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Active Store

CS Software stack 

Architectural design of Active Storage 

self-contained objects 

COMPSs Apps

Cassandra

Hierarchical storage + Computing resources

PIMD BGAS dataClay

Resource management policies: 
data organization, query plans, computation scheduling

Common API (data access and control flow.)

Adaptive internal 
structure

Compute capability



dataCLay: platform that manages Self-Contained Objects (data and 
code)
Platform features:
– Store and retrieve objects as seen by applications
– Remote execution of methods
– Add new classes
– Enrich existing classes: With new methods and With new fields

dataClay

46

Backend

ApplicationApplication

dataClay

Application

Data

Enrichment Enrichment
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Bigdata resource management: overview

Objectives:
– to propose a highly-scalable 

resource management architecture 
for BigData applications

– to decouple data modeling from 
data organization

– to provide programmers with 
mechanisms to generate automatic 
data organization and automatic 
query code, that considers the 
performance of the data store 
system 

Apache Cassandra used to 
evaluate our proposals 

query plan and load balancer

data store

data 
organizations

abstract 
data model

replica1 replica2 replica3

user query

system query

translate



Integration COMPSs – Common Storage API
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Constructor(name)

Query / update

COMPSs

task

Application
task

task

AS

Common API

makePersistent

Iter / next getID

deletePersistent

getLocations newReplica

newVersion

consolidateVersion

getByID

Stub Static

OIDs

Cassandra dataClay Others



import sys

neurons_file_name = sys.argv[1]
correlation_file_name = sys.argv[2]

nd = NeuronData(neurons_file_name)
correlation = Correlation()

seed = 2398645
delta = 1782324

for i in nd.spikes.keys():
for j in nd.spikes.keys():

if i<j:
cc_surrogate_range(i, j, nd, …)
seed = seed + delta

dumpToFile(correlation, corr_file_name)      

Sample case: Neuroscience Data Processing

Main program

def cc_surrogate_range(i, j, nd, correlation, seed, num_surrs, 
num_bins, 
maxlag):

sp = nd.spikes
…

for ni in range(i, i+1) :
for nj in range(j, j+1):

correlation.cc_originals[(ni,nj)] = correlate(sp[ni], sp[nj], …)
…          

my_cc_surrs[:,0] = surrs_ij_sorted[round(num_surrs*0.95),:]
my_cc_surrs[:,1] = surrs_ij_sorted[round(num_surrs*0.05),:]
correlation.cc_surrs[(ni,nj)] = my_cc_surrs

Function definition
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load neuron 
data

new object

iterate over 
spikes keys

get access to spikes data

read access

write 
access

store correlation data

Sequential code 
Data in Python tables 

Find out correlation between spike trains with regard external events 



import sys

neuron_data_name = sys.argv[1]
correlation_name = sys.argv[2]

nd = NeuronData(neuron_data_name )
correlation = Correlation()
correlation.make_persistent(correlation_name)

seed = 2398645
delta = 1782324

for block_i in nd.spikes.keys(): 
for block_j in nd.spikes.keys():

cc_surrogate_range(block_i, block_j, nd, …) 
seed = seed + delta

Neuroscience Data Processing @ PyCOMPSs + 
persistent objects

Main program

from pycompss.api.task import task

@task()
def cc_surrogate_range(block_i, block_j, nd, correlation, seed, 
num_surrs, num_bins, maxlag):

sp = nd.spikes
…

for ni in block_i:
for nj in block_j:

if ni<nj:
correlation.cc_originals[(ni,nj)] = correlate(sp[ni], sp[nj], 

…)
…

my_cc_surrs[:,0] = surrs_ij_sorted[round(num_surrs*0.95),:]
my_cc_surrs[:,1] = surrs_ij_sorted[round(num_surrs*0.05),:]
correlation.cc_surrs[(ni,nj)] = my_cc_surrs

Tasks definition
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get access to neuron data

create persistent object

new object

iterate over spikes 
keys 

get access to spikes data

iterate over keys in 
blocks

load data

store 
data



Neuroscience Data Processing @ PyCOMPSs and 
Cassandra: Data mapping
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cc_originals cc_surrs

“Name2” Table

value

class Correlation

name = string

cc_originals = dict

cc_surrs = dict

cc_originals cc_surrs

Correlation Class

valuekey

name

key

key

spikes

“Name1” Table

value

class NeuronData

name = string

spikes = dict

spikes

NeuronData Class

valuekey

name

key

key

Programmer view Backend
(Cassandra)

Data identifier in 
persistent storage



Neuroscience Data Processing: initial results
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Projects where COMPSs is used/further developed



Previous projects

Virtual multidisciplinary 
EnviroNments USing 
Cloud Infrastructures



Conclusions

Sequential programming approach
Parallelization at task level
Transparent data management and remote execution
Can operate on different infrastructures: Cluster, Grid, Cloud 
(Public/Private)
Enables orchestration of Web services
Demonstrated in several projects and applications
New language bindings (Python) and extensions to integrate 
with new storage methodologies make it a promising 
environment for Big-data projects 
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COMPSs

Project page: http://www.bsc.es/compss
Direct downloads page: 
http://www.bsc.es/computer-sciences/grid-computing/comp-
superscalar/download
– Source code
– Sample applications & development virtual appliances
– Tutorials
– Red-Hat & Debian based installation packages
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www.bsc.es

Thank you!
Downloads: http://www.bsc.es/computer-sciences/grid-

computing/comp-superscalar/download
Support mailing list at http://compss.bsc.es/support-compss

Announces mailing list at http://compss.bsc.es/announces-compss


