
www.bsc.es

Easy Programming the Cloud with PyCOMPSs

FiCLOUD 2014
Barcelona, August 28

Barcelona Supercomputing Center

The BSC-CNS objectives:
– R&D in Computer Sciences, Life Sciences

and Earth Sciences
– Supercomputing support to external

research

BSC-CNS is a consortium that includes :
– the Spanish Government – 51%
– the Catalonian Government – 37%
– the Technical University of Catalonia (UPC) – 12%

+400 people

MareNostrum III overview
Deployed end on 2013
36 x IBM iDataPlex Compute racks
– 84 x IBM dx360 M4 compute nodes

• 2x SandyBridge-EP E5-2670 2.6GHz/1600 20M 8-core 115W
• 8x 4G DDR3-1600 DIMMs (2GB/core)
• 500GB 7200 rpm SATA II local HDD

3028 compute nodes
– 48,448 Intel cores

Memory 94.62 TB
– 32GB/node

Peak performance: 1.0 Pflop/s
– Node performance: 332.8 Gflops
– Rack Performance: 27.95 Tflops
– Rack Consumption: 28.04 kW/rack (nominal under HPL)

Estimated power consumption: 1.08 MW
Infiniband FDR10 non-blocking Fat Tree network topology
Position 41 of TOP500

3

MareNostrum III

Maybe not the most powerful supercomputer…
but the more beautiful in the world

BSC-CNS: Computer Sciencies

5

Outline

Programming challenges for the cloud and distributed
computing in general
StarSs programming model
Programming the cloud with COMPSs
– Syntax + Python binding: PyCOMPSs + C
– COMPSs infrastructure and features
– Associated Tools: IDE, monitor, traces

Integration of COMPSs with new storage strategies
Other projects where COMPSs has been involved
Conclusions

6

7

Challenges: How to efficiently compute in the cloud with
wireless sensor networks data?

On board processor

Wireless Sensor Network

Car-to-Car / Car-to-Infrastructure

Reliable, secure, ubiquitous
communication network

CAR STATE COMMUNICATION

Real-time control of single
vehicles

ACTION on the ACTUATORS
in cooperation with the on board

processor

Cloud

Data Centers

Supercar

Active aerodynamics simulation

8

Cloud programming challenge, or how to make it the
programmers comfort zone

The Learning Zone model establishes a
theory of how performance of a person can
be enhanced and their skills optimized

– Comfort Zone: feel comfortable and do not have to
take any risks

– Learning Zone: just outside of our secure
environment, we grow and learn

– Panic Zone: all our energy is used up for
managing/controlling our anxiety and no energy
can flow into learning.

Moving to the learning zone, enables to
extend the comfort zone, moving towards the
panic zone
When following a personal dream or vision,
individuals need to move to the learning zone
and take controlled risks, in order to achieve
the challenges of their panic zone

Social pedagogy

* The Learning Zone Model
(Senninger, 2000)

Cloud poses different challenges to programmers
… away from the current comfort zone
… maybe in the panic zone???

The programming comfort zone

State of the art in programming
– Sequential programming
– Data is always where you expect
– All decisions controlled by the

programmer

Programming for the cloud
– Parallel programming (~)
– Elasticity
– Distributed environment -> where is my

data?

Comfort zone

Panic? Zone

Sequential programming

Simple interface
Sequential program

Regular processors

Programming language

Programs
“decoupled”

from computing
platform

Applications

Programming evolution for distributed programming

Distributed computing APIs make programming more
complicated

Programming language + API

Applications

Program logic
+

Middleware
specificities

BSC vision

12

General purpose
Task based

Single address space

“Reuse”
architectural ideas

under
new constraints

Program logic
independent of

computing platformApplications

Power to the runtime

PM: High-level, clean, abstract interface

API

STARSs basic idea

Resource 1
...
for (i=0; i<N; i++){

T1 (data1, data2);
T2 (data4, data5);
T3 (data2, data5, data6);
T4 (data7, data8);
T5 (data6, data8, data9);

}
...

Sequential Code

T10 T20

T30
T40

T50
T11 T21

T31
T41

T51

T12

…

(c) Scheduling,

data transfer,

task execution

(d) Task completion,

synchronization

Parallel Resources
(a) Task selection +

parameters direction

(input, output, inout)

Resource 2

Resource N

. . .

(b) Task graph creation

based on data

dependencies

13

• StarSs
– Sequential general purpose

programming language + annotations
– Task based
– Simple linear address space

– Support for SMP, GPUs, Cluster, Grids
and Clouds

StarSsCellSs
SMPSs
GPUSs

GridSs

ClearSpeedSs

ClusterSs

OmpSs
ClusterSs

COMPSs
• Programmability/Portability

– “Same” source code runs on “any” platform
– Incremental parallelization/restructure
– Focus in the problem, not in the hardware

platform

• Performance
– Intelligent Runtime

– Automatically extracts and exploits
parallelism

– Locality awareness
– Matches computations to specific

resources on each type of target
platform

Open Source
http://compss.bsc.es

The StarSs programming model

The StarSs “Granularities”

StarSs

OmpSs COMPSs

@ SMP @ GPU @ Cluster

Average task Granularity:

100 microseconds – 10 milliseconds 1second - 1 day

Language binding:

C, C++, FORTRAN Java, Python, C/C++

Address space to compute dependences:

Memory Files, Objects (SCM)

Parallel Ensemble, workflow

Advantages and drawbacks of COMPSs
✔ More flexible and with more expressivity

– The potential of the programming language
– Enables to express complex problems

✔ Data independent
– Different data inputs may generate different task graphs

✔ Powerful runtime
– Platform unaware
– Exploits inherent parallelism

✗ Less explicit than graphical workflows
– Although this can be partially compensated with the COMPSs monitor

✗ Large degree of flexibility may prevent some programmers to be
efficient

– Schemas such as MapReduce are sometimes more appreciated by
programmers

– Can be improved through training and support

16

Programming objectives

Reduce the development complexity of Grid/Cluster/Cloud
applications to the minimum
– Writing an application for a computational distributed infrastructure may

be as easy as writing a sequential application

Target applications: composed of tasks, called several times
– Granularity of the tasks or programs
– Data: files, objects, arrays and primitive types

Programming languages support
– Java (native)
– Python
– C/C++

17

18

COMPSs syntax: Java

Main Program {

taskA(data1);

for (int i=0; i< N; i++)

taskB(data1, data2);

if (condition)

process(data2);

}

t
taskA

taskBtaskBtaskB

main thread

synch

Based on pure-Java fully-sequential programming
– No APIs, no threading, no messaging
– No parallel constructs, no pragmas
– Maintains sequential consistency

 public interface HMMPfamItf {
@Constraints(storageElemSize = 0.5f)
@Method(declaringClass = "hmmerws.HMMPfamImpl")
String hmmpfam(

@Parameter(type = Type.FILE, direction = Direction.IN) String seqFile,
@Parameter(type = Type.FILE, direction = Direction.IN) String dbFile);

@Service(namespace = "http://hmmerobj.worker", name = "HmmerObjects", port =
"HmmerObjectsPort")

String scoreRating(
@Parameter(type = Type.OBJECT, direction = Direction.IN) String resultFile1,
@Parameter(type = Type.OBJECT, direction = Direction.IN) String resultFile2);

}

Annotated Interface

public static void main(String args[]) throws Exception {
split(fSeq, fDB, seqFrags, dbFrags);
for (String dbFrag : dbFrags)

for (String seqFrag : seqFrags) {
output = HMMPfamImpl.hmmpfam (seqFrag, dbFrag);
finalOutput = scoreRating(output, finalOutput);

}
}

Java code

Task constraints

Parameter
metadata

COMPSs syntax: Java

Regular methods

Web services

Python (PyCOMPSs) syntax

Invoke tasks as Python
functions/methods

API for data synchronization

20

class Foo(object):
@task()
def myMethod(self):

…

foo = Foo()

myFunction(foo)

foo.myMethod()

…

foo = compss_wait_on(foo)

foo.bar()

Main Program

Function definition

Task selection in function definition (decorators)

@task(par = INOUT)
def myFunction(par):
…

myF

myM

synch

21

COMPSs syntax: C
compss_on();

A = Matrix::init(N,M,val);
B = Matrix::init(N,M,val)
C = Matrix::init(N,M,0.0)

C.multiply(A, B);
compss_off();

Main Program

interface Matmul
{
//C functions
void initMatrix(inout Matrix matrix, in int mSize, in int nSize, in
double val);
void multiplyBlocks(inout Block block1, inout Block block2, inout
Block block3);
//C++ Methods
void Block::multiply(in Block block1, in Block block2);
static Matrix Matrix::init(in int mSize, in int bSize, in double
val);
};

Interface

IDL file used to identify tasks
and parameters

API for data synchronization

Service Composition

Orchestrating parallel services as sequential applications
– Rely on inner services (and methods)
– Can be published as a service as well
– Several orchestrations as a single service

22

public class TravelService {

@Orchestration

public Booking bookTravel(…) {

Card c = checkCreditCard(…);

…

}

}

public interface TravelItf {

@Service(…)

Card checkCreditCard(…);

…

}

COMPSs Bindings integration

23

Java
Runtime

C/C++
stubs

Python
binding

Java
App

C/C++
App

Python
App

JNIC/C++
library

Custom Loader

Javassist

initialize(f1);

for (int i = 0; i < 2; i++) {

genRandom(f2);

add(f1, f2);

}

print(f2);

Annotated
interface

T1 T3

T2 T4
Grids
Clusters
Clouds

Files

COMPSs Infrastructure

User code: Python, Java, C/C++

Runtime features

Supported Features:
– Unaware of underlying computing

platform
– Interoperability with different

clouds
– Data dependency analysis
– Data renaming
– Data transfer

In Progress:
– Checkpointing
– Task nesting
– Distributed Scheduling P2P
– Support for heterogeneous

platforms

– Task scheduling
– Resource management
– Results collection
– Fault tolerance
– Shared disks management

– Deployment in mobile clouds
– Task scheduling with multiple

versions

25

OpenStack

26

Runtime System: Interoperability

Platform unawareness
Support for different grid
middlewares
Cloud interoperability:

– Public and private
– Heterogeneous

clouds

27

Computing platform: in a Cluster (interactive)

Typical setup:
– Master node: main program (+ master runtime)
– Worker nodes: tasks (+ worker runtime)

Communication layer

SSH...

COMPSs Master RT

App main program

COMPSs Worker RT

Task code

Master

Workers

Described by XML files

28

Computing platform: in a Cluster (queue system)

Execution divided in two phases
– Launch scripts queue a whole COMPSs app execution
– Actual execution starts when reservation is obtained

Queue System (LSF, PBS, ...)

Launch
scripts

Automatically
generate XML files

COMPSs RT

Application

29

Computing platform: in a Grid

COMPSs Runtime

30

Composite

Composite

Composite

Service Class COMPSs RT

S
er

vi
ce

In
te

rfa
ce

C
lie

nt

Service Container

... ...

Service

Method

Method

Runtime integrated in a platform with:
– Service orientation
– Virtualization

Computing platform: in the Cloud

31

Deployment of COMPSs in EGI federated cloud
Single multi-job request

(workflow)
Multiple requests

ENM Service (OMWS2)Single request scenario: Issues a
multi-job request (6 species and 2
modelling algorithms) producing
12 distribution models. It exploits
different FedCloud templates.
Multiple requests scenario: tests
the global service performance for
a given workload pattern
(Gaussian random) by issuing
many requests with low
complexity (3 tasks).

32

Runtime behavior: scheduling and resource management
Task Scheduler
– Assigns tasks to VMs or physical resources
– Each VM or resource has its own task queue

Scheduling Optimizer
– Checks status of workers
– Can decide

• To perform load balancing
• Create/destroy new VMs

Resource Manager: elasticity
– Manages all cloud middleware related features
– Holds information about all workers and about cloud providers
– Scheduler Optimizer sends to the RM requirements about new VM characteristics
– Resource Manager, evaluates the cloud providers alternatives and chooses the

best option
• More economic
• The decision can be to open a new private or public VM

– For each Cloud provider, a data structure stores the different available instances
(with its features) and the connector that should be used

33

Interoperability to cloud middleware through connectors
The runtime communicates with the Cloud by means of Cloud
connectors
The connectors implement the interaction of the runtime with a given
Cloud provider
Connectors abstract the
runtime from the particular API
of each provider
This design facilitates the
addition of new connectors for
other providers.

Runtime behavior

Dependence detection
– In files
– In objects
– In data from Web services

34

Elasticity in the Cloud

Sample hybrid setup for Cloud bursting

35

Elasticity in the Cloud

36

Dynamic creation /
destruction of VMs

– Depending on task load

Bursting to meet peak
demands

– Private Cloud (EMOTIVE)
– Public Cloud (Amazon)

Save VMs for later use
– Amazon: use the whole

hour slot

Reuse of VMs
VM deadlines

Elasticity in the Cloud

Scalability
– Private Cloud: the entire

workflow in a single
provider

– Hybrid (Private + Public):
tasks and data distributed
over two distant providers

38

COMPSs IDE

Graphical interface to help developers with COMPSs
applications
– Annotation of main program and tasks
– Generation of project and resources files (xml)
– Deployment in the infrastructure

Developed as Eclipse plugin
– Available in the Eclipse marketplace

39

Runtime Monitoring

The runtime of COMPSs provides some information at execution
time so the user can follow the progress of the application:
– Real-time monitoring information (http://localhost:8080/compss-

monitor/)
• # tasks
• Resources usage information
• Execution time per task
• Real-time execution graph
• …

Runtime features: Tracing and performance analysis
Paraver is the BSC tool for trace visualization
– Trace events are encoding in Paraver (.prv)

format by Extrae
– Paraver is a powerful tool for performance

analysis
– Paraver enables different views of a trace

40

41

Severo Ochoa project

The BSC-CNS has been accredited with the Severo Ochoa
Center of Excellence, an award given by the Spanish Ministry
as recognition of leading research centres in Spain that are
internationally known organisations in their respective areas.
Involves all BSC R&D departments
Four subprojects:
– Hardware and software technologies,

to facilitate the introduction of Exascale computing and managing large
amounts of data, focusing on the improvement of energy efficiency

– Personalized medicine, to design drugs to fit the needs of each patient
– Heart simulation, to perform modelling and simulation with the primary

objective to determine how the heart muscle works
– Air quality and climate models, specially in areas that affect health

(Sahara dust concentration)

Severo Ochoa: Cloud and BigData

Intersection between Cloud Computing and large scale data
analytics/management

Vertical approach integrating previous technologies
– Programming environments and runtime systems
– Resource management in heterogeneous systems and workloads
– Storage architecture and management

To be demonstrated with “in-house” scientific challenges

What is the HBP?Human Brain Project

A 10-year European initiative to
understand the human brain,
enabling advances in neuroscience,
medicine and future computing

One of two FET Flagships

A consortium of 256 researchers
from 146 institutions, in 24
countries across Europe, in the US,
Japan and Chin

BSC contributes with programming
models and resource management

44

Sample scenarios

Model =
{neurons}

Simulation1

Simulation2

Potentials=
{sequence
for each
neuron}

Implementation:
Persistent, Distributed, Resilient

API:
Shared object space

management: create/delete
Access: get, put
Query, iterators

Concurrency
flow control (seq/par)
synchronization

Consistency

45

Active Store

CS Software stack

Architectural design of Active Storage

self-contained objects

COMPSs Apps

Cassandra

Hierarchical storage + Computing resources

PIMD BGAS dataClay

Resource management policies:
data organization, query plans, computation scheduling

Common API (data access and control flow.)

Adaptive internal
structure

Compute capability

dataCLay: platform that manages Self-Contained Objects (data and
code)
Platform features:
– Store and retrieve objects as seen by applications
– Remote execution of methods
– Add new classes
– Enrich existing classes: With new methods and With new fields

dataClay

46

Backend

ApplicationApplication

dataClay

Application

Data

Enrichment Enrichment

47

Bigdata resource management: overview

Objectives:
– to propose a highly-scalable

resource management architecture
for BigData applications

– to decouple data modeling from
data organization

– to provide programmers with
mechanisms to generate automatic
data organization and automatic
query code, that considers the
performance of the data store
system

Apache Cassandra used to
evaluate our proposals

query plan and load balancer

data store

data
organizations

abstract
data model

replica1 replica2 replica3

user query

system query

translate

Integration COMPSs – Common Storage API

48

Constructor(name)

Query / update

COMPSs

task

Application
task

task

AS

Common API

makePersistent

Iter / next getID

deletePersistent

getLocations newReplica

newVersion

consolidateVersion

getByID

Stub Static

OIDs

Cassandra dataClay Others

import sys

neurons_file_name = sys.argv[1]
correlation_file_name = sys.argv[2]

nd = NeuronData(neurons_file_name)
correlation = Correlation()

seed = 2398645
delta = 1782324

for i in nd.spikes.keys():
for j in nd.spikes.keys():

if i<j:
cc_surrogate_range(i, j, nd, …)
seed = seed + delta

dumpToFile(correlation, corr_file_name)

Sample case: Neuroscience Data Processing

Main program

def cc_surrogate_range(i, j, nd, correlation, seed, num_surrs,
num_bins,
maxlag):

sp = nd.spikes
…

for ni in range(i, i+1) :
for nj in range(j, j+1):

correlation.cc_originals[(ni,nj)] = correlate(sp[ni], sp[nj], …)
…

my_cc_surrs[:,0] = surrs_ij_sorted[round(num_surrs*0.95),:]
my_cc_surrs[:,1] = surrs_ij_sorted[round(num_surrs*0.05),:]
correlation.cc_surrs[(ni,nj)] = my_cc_surrs

Function definition

49

load neuron
data

new object

iterate over
spikes keys

get access to spikes data

read access

write
access

store correlation data

Sequential code
Data in Python tables

Find out correlation between spike trains with regard external events

import sys

neuron_data_name = sys.argv[1]
correlation_name = sys.argv[2]

nd = NeuronData(neuron_data_name)
correlation = Correlation()
correlation.make_persistent(correlation_name)

seed = 2398645
delta = 1782324

for block_i in nd.spikes.keys():
for block_j in nd.spikes.keys():

cc_surrogate_range(block_i, block_j, nd, …)
seed = seed + delta

Neuroscience Data Processing @ PyCOMPSs +
persistent objects

Main program

from pycompss.api.task import task

@task()
def cc_surrogate_range(block_i, block_j, nd, correlation, seed,
num_surrs, num_bins, maxlag):

sp = nd.spikes
…

for ni in block_i:
for nj in block_j:

if ni<nj:
correlation.cc_originals[(ni,nj)] = correlate(sp[ni], sp[nj],

…)
…

my_cc_surrs[:,0] = surrs_ij_sorted[round(num_surrs*0.95),:]
my_cc_surrs[:,1] = surrs_ij_sorted[round(num_surrs*0.05),:]
correlation.cc_surrs[(ni,nj)] = my_cc_surrs

Tasks definition

50

get access to neuron data

create persistent object

new object

iterate over spikes
keys

get access to spikes data

iterate over keys in
blocks

load data

store
data

Neuroscience Data Processing @ PyCOMPSs and
Cassandra: Data mapping

51

cc_originals cc_surrs

“Name2” Table

value

class Correlation

name = string

cc_originals = dict

cc_surrs = dict

cc_originals cc_surrs

Correlation Class

valuekey

name

key

key

spikes

“Name1” Table

value

class NeuronData

name = string

spikes = dict

spikes

NeuronData Class

valuekey

name

key

key

Programmer view Backend
(Cassandra)

Data identifier in
persistent storage

Neuroscience Data Processing: initial results

52

0

100

200

300

400

500

600

0 50 100 150

m
in

worker cores

Execution time

Execution trace

Task dependency
graph

gather

gather

gather

cc_sur

cc_sur

cc_sur

gather

gather

gather

cc_sur

cc_sur

cc_sur

…

…

Projects where COMPSs is used/further developed

Previous projects

Virtual multidisciplinary
EnviroNments USing
Cloud Infrastructures

Conclusions

Sequential programming approach
Parallelization at task level
Transparent data management and remote execution
Can operate on different infrastructures: Cluster, Grid, Cloud
(Public/Private)
Enables orchestration of Web services
Demonstrated in several projects and applications
New language bindings (Python) and extensions to integrate
with new storage methodologies make it a promising
environment for Big-data projects

55

COMPSs

Project page: http://www.bsc.es/compss
Direct downloads page:
http://www.bsc.es/computer-sciences/grid-computing/comp-
superscalar/download
– Source code
– Sample applications & development virtual appliances
– Tutorials
– Red-Hat & Debian based installation packages

56

Rosa M Badia
Pedro Benedicte (part time)
Carlos Diaz
Jorge Ejarque
Fredy Juarez

Daniele Lezzi
Francesc Lordan
Roger Rafanell
Cristian Ramon (part time)
Raul Sirvent
Enric Tejedor

57

The COMPSs team

Other CS members

Toni Cortes
Anna Queralt
Jonathan Martí
Jordi Torres
Yolanda Becerra
David Carrera
Jesus Labarta
Eduard Ayguadé

58

www.bsc.es

Thank you!
Downloads: http://www.bsc.es/computer-sciences/grid-

computing/comp-superscalar/download
Support mailing list at http://compss.bsc.es/support-compss

Announces mailing list at http://compss.bsc.es/announces-compss

